DISCLAIMER : Please note that blog owner takes no responsibility of any kind for any type of data loss or damage by trying any of the command/method mentioned in this blog. You may use the commands/method/scripts on your own responsibility.If you find something useful, a comment would be appreciated to let other viewers also know that the solution/method work(ed) for you.


NIC Channel Bonding in Linux

Today I had implemented NIC bonding (bind both NIC so that it works as a single device). Bonding is nothing but Linux kernel feature that allows to aggregate multiple like interfaces (such as eth0, eth1) into a single virtual link such as bond0. The idea is pretty simple get higher data rates and as well as link failover. NIC channel bonding allows multiple network cards to act as one, allowing increased bandwidth and redundancy.


Linux allows binding of multiple network interfaces into a single channel/NIC using special kernel module called bonding. According to official bonding documentation:

The Linux bonding driver provides a method for aggregating multiple network interfaces into a single logical "bonded" interface. The behavior of the bonded interfaces depends upon the mode; generally speaking, modes provide either hot standby or load balancing services. Additionally, link integrity monitoring may be performed.

Step #1: Create a Bond0 Configuration File


Red Hat Enterprise Linux (and its clone such as CentOS) stores network configuration in /etc/sysconfig/network-scripts/ directory. First, you need to create a bond0 config file as follows:

# vi /etc/sysconfig/network-scripts/ifcfg-bond0
Append the following linest:
 
DEVICE=bond0
IPADDR=192.168.1.20
NETWORK=192.168.1.0
NETMASK=255.255.255.0
USERCTL=no
BOOTPROTO=none
ONBOOT=yes
 
You need to replace IP address with your actual setup. Save and close the file.

Step #2: Modify eth0 and eth1 config files



Open both configuration using a text editor such as vi/vim, and make sure file read as follows for eth0 interface

# vi /etc/sysconfig/network-scripts/ifcfg-eth0
Modify/append directive as follows:

DEVICE=eth0
USERCTL=no
ONBOOT=yes
MASTER=bond0
SLAVE=yes
BOOTPROTO=none

Open eth1 configuration file using vi text editor, enter:

# vi /etc/sysconfig/network-scripts/ifcfg-eth1
Make sure file read as follows for eth1 interface:

DEVICE=eth1
USERCTL=no
ONBOOT=yes
MASTER=bond0
SLAVE=yes
BOOTPROTO=none

Save and close the file.

Step # 3: Load bond driver/module


Make sure bonding module is loaded when the channel-bonding interface (bond0) is brought up. You need to modify kernel modules configuration file:

# vi /etc/modprobe.conf
Append following two lines:

alias bond0 bonding
options bond0 mode=balance-alb miimon=100

Save file and exit to shell prompt. A description of the bonding options is available here.

Step # 4: Test configuration


First, load the bonding module, enter:

# modprobe bonding
Restart the networking service in order to bring up bond0 interface, enter:

# service network restart
Make sure everything is working. Type the following to query the current status of Linux kernel bounding driver, enter:

# cat /proc/net/bonding/bond0
Sample outputs:
Bonding Mode: load balancing (round-robin)
MII Status: up
MII Polling Interval (ms): 100
Up Delay (ms): 200
Down Delay (ms): 200
Slave Interface: eth0
MII Status: up
Link Failure Count: 0
Permanent HW addr: 00:0c:29:c6:be:59
Slave Interface: eth1
MII Status: up
Link Failure Count: 0
Permanent HW addr: 00:0c:29:c6:be:63
To list all network interfaces, enter:

# ifconfig
Sample outputs:
bond0     Link encap:Ethernet  HWaddr 00:0C:29:C6:BE:59
 inet addr:192.168.1.20  Bcast:192.168.1.255  Mask:255.255.255.0
 inet6 addr: fe80::200:ff:fe00:0/64 Scope:Link
 UP BROADCAST RUNNING MASTER MULTICAST  MTU:1500  Metric:1
 RX packets:2804 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1879 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:250825 (244.9 KiB)  TX bytes:244683 (238.9 KiB)
eth0      Link encap:Ethernet  HWaddr 00:0C:29:C6:BE:59
 inet addr:192.168.1.20  Bcast:192.168.1.255  Mask:255.255.255.0
 inet6 addr: fe80::20c:29ff:fec6:be59/64 Scope:Link
 UP BROADCAST RUNNING SLAVE MULTICAST  MTU:1500  Metric:1
 RX packets:2809 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1390 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:251161 (245.2 KiB)  TX bytes:180289 (176.0 KiB)
 Interrupt:11 Base address:0x1400
eth1      Link encap:Ethernet  HWaddr 00:0C:29:C6:BE:59
 inet addr:192.168.1.20  Bcast:192.168.1.255  Mask:255.255.255.0
 inet6 addr: fe80::20c:29ff:fec6:be59/64 Scope:Link
 UP BROADCAST RUNNING SLAVE MULTICAST  MTU:1500  Metric:1
 RX packets:4 errors:0 dropped:0 overruns:0 frame:0
 TX packets:502 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:258 (258.0 b)  TX bytes:66516 (64.9 KiB)
 Interrupt:10 Base address:0x1480

Once the bond is configured it acts like any other Ethernet device. For example, you can configure alias interfaces to handle multiple IP addresses, as shown below.

Create the "ifcfg-bond0:1" and "ifcfg-bond0:2" files in the "/etc/sysconfig/network-scripts" directory with the following contents.

# ifcfg-bond0:1 file contents
DEVICE=bond0:1
BOOTPROTO=none
ONBOOT=yes
NETWORK=192.168.0.0
NETMASK=255.255.255.0
IPADDR=192.168.0.172
USERCTL=no
BONDING_OPTS="mode=1 miimon=100"

# ifcfg-bond0:2 file contents
DEVICE=bond0:2
BOOTPROTO=none
ONBOOT=yes
NETWORK=192.168.0.0
NETMASK=255.255.255.0
IPADDR=192.168.0.173
USERCTL=no
BONDING_OPTS="mode=1 miimon=100"


Notice, the device names and IP addresses differ from the original "ifcfg-bond0" file.

Restart the network service for the changes to take effect.
# service network restart
Shutting down interface bond0:                             [  OK  ]
Shutting down loopback interface:                          [  OK  ]
Bringing up loopback interface:                            [  OK  ]
Bringing up interface bond0:                               [  OK  ]
#
The ifconfig command shows the three IP addresses being handled by the bond.
[root@wls11g-1 network-scripts]# ifconfig
bond0     Link encap:Ethernet  HWaddr 08:00:27:FC:F5:B7  
          inet addr:192.168.0.171  Bcast:192.168.0.255  Mask:255.255.255.0
          UP BROADCAST RUNNING MASTER MULTICAST  MTU:1500  Metric:1
          RX packets:14635 errors:0 dropped:306 overruns:0 frame:0
          TX packets:7310 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:17571270 (16.7 MiB)  TX bytes:554475 (541.4 KiB)

bond0:1   Link encap:Ethernet  HWaddr 08:00:27:FC:F5:B7  
          inet addr:192.168.0.172  Bcast:192.168.0.255  Mask:255.255.255.0
          UP BROADCAST RUNNING MASTER MULTICAST  MTU:1500  Metric:1

bond0:2   Link encap:Ethernet  HWaddr 08:00:27:FC:F5:B7  
          inet addr:192.168.0.173  Bcast:192.168.0.255  Mask:255.255.255.0
          UP BROADCAST RUNNING MASTER MULTICAST  MTU:1500  Metric:1

eth0      Link encap:Ethernet  HWaddr 08:00:27:FC:F5:B7  
          UP BROADCAST RUNNING SLAVE MULTICAST  MTU:1500  Metric:1
          RX packets:1835 errors:0 dropped:0 overruns:0 frame:0
          TX packets:961 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000 
          RX bytes:189616 (185.1 KiB)  TX bytes:129841 (126.7 KiB)

eth1      Link encap:Ethernet  HWaddr 08:00:27:FC:F5:B7  
          UP BROADCAST RUNNING SLAVE MULTICAST  MTU:1500  Metric:1
          RX packets:12800 errors:0 dropped:306 overruns:0 frame:0
          TX packets:6349 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000 
          RX bytes:17381654 (16.5 MiB)  TX bytes:424634 (414.6 KiB)

lo        Link encap:Local Loopback  
          inet addr:127.0.0.1  Mask:255.0.0.0
          UP LOOPBACK RUNNING  MTU:16436  Metric:1
          RX packets:1541 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1541 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:3612733 (3.4 MiB)  TX bytes:3612733 (3.4 MiB)

#

Tcpdump command

Tcpdump is a really great tool for network security analyst, you can dump packets that flows within your networks into file for further analysis. With some filters you can capture only the interested packets, which it reduce the size of saved dump and further reduce loading and processing time of packets analysis.


This post will only covers the fundamental of tcpdump usage, bare in mind tcpdump can do much much more than what I illustrate here.

Lets start with capturing packets based on network interface, ports and protocols. Let assume I wanna capture tcp packets that flow over eth1, port 6881. The dump file with be save as test.pcap.
tcpdump -w test.pcap -i eth1 tcp port 6881
Simple right? What if at the same time I am interested on getting packets on udp port 33210 and 33220?
tcpdump -w test.pcap -i eth1 tcp port 6881 or udp \( 33210 or 33220 \)



‘\’ is an escape symbol for ‘(‘ and ‘)’. Logic OR implies PLUS (+). In plain text is I want to capture tcp packets flows over port 6881 plus udp ports 33210 and 33220.

Careful with ‘and’ in tcpdump filter expression, it means intersection. Thats why I put ‘or’ instead of and within udp port 33210 and 33220. The usage of ‘and’ in tcpdump will be illustrate later.

Ok, how about reading pcap that I saved previously?
tcpdump -nnr test.pcap


The -nn is to tell tcpdump not to resolve DNS on IP and Ports, where r is read.

Adding -tttt to makes the timestamp appears more readable format.
tcpdump -ttttnnr test.pcap
How about capture based on IP ?
You need to tell tcpdump which IP you are interested in? Destination IP? or Source IP ? Let say I wanna sniff on destination IP 10.168.28.22 tcp port 22, how should i write?
tcpdump -w test.pcap dst 10.168.28.22 and tcp port 22


So the ‘and’ makes the intersection of destination IP and port.

By default the sniff size of packets is 96 bytes, you somehow can overload that size by specified with -s.
tcpdump -w test.pcap -s 1550 dst 10.168.28.22 and tcp port 22
Some version of tcpdump allows you to define port range. You can as bellow for capturing packets based on a range of tcp port.
tcpdump tcp portrange 20-24
Bare in mind, the line above I didn’t specified -w which it won’t write to a file but i will just print the captured packets on the screen.

Basic examples of linux netstat command

Netstat

Netstat is a command line utility that can be used to list out all the network (socket) connections on a system. It lists out all the tcp, udp socket connections and the unix socket connections.

Apart from connected sockets it can also list listening sockets that are waiting for incoming connections. So by verifying an open port 80 you can confirm if a web server is running on the system or not. This makes it a very useful tool for network and system administrators.

In this tutorial we shall be checking out few examples of how to use netstat to find information about network connections and open ports on a system.

Here is a quick intro to netstat from the man pages
netstat - Print network connections, routing tables, interface statistics, masquerade connections, and multicast memberships

1. List out all connections

The first and most simple command is to list out all the current connections. Simply run the netstat command with the a option.
$ netstat -a

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State      
tcp        0      0 enlightened:domain      *:*                     LISTEN     
tcp        0      0 localhost:ipp           *:*                     LISTEN     
tcp        0      0 enlightened.local:54750 li240-5.members.li:http ESTABLISHED
tcp        0      0 enlightened.local:49980 del01s07-in-f14.1:https ESTABLISHED
tcp6       0      0 ip6-localhost:ipp       [::]:*                  LISTEN     
udp        0      0 enlightened:domain      *:*                                
udp        0      0 *:bootpc                *:*                                
udp        0      0 enlightened.local:ntp   *:*                                
udp        0      0 localhost:ntp           *:*                                
udp        0      0 *:ntp                   *:*                                
udp        0      0 *:58570                 *:*                                
udp        0      0 *:mdns                  *:*                                
udp        0      0 *:49459                 *:*                                
udp6       0      0 fe80::216:36ff:fef8:ntp [::]:*                             
udp6       0      0 ip6-localhost:ntp       [::]:*                             
udp6       0      0 [::]:ntp                [::]:*                             
udp6       0      0 [::]:mdns               [::]:*                             
udp6       0      0 [::]:63811              [::]:*                             
udp6       0      0 [::]:54952              [::]:*                             
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags       Type       State         I-Node   Path
unix  2      [ ACC ]     STREAM     LISTENING     12403    @/tmp/dbus-IDgfj3UGXX
unix  2      [ ACC ]     STREAM     LISTENING     40202    @/dbus-vfs-daemon/socket-6nUC6CCx
The above command shows all connections from different protocols like tcp, udp and unix sockets. However this is not quite useful. Administrators often want to pick out specific connections based on protocols or port numbers for example.

2. List only TCP or UDP connections

To list out only tcp connections use the t options.
$ netstat -at
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State      
tcp        0      0 enlightened:domain      *:*                     LISTEN     
tcp        0      0 localhost:ipp           *:*                     LISTEN     
tcp        0      0 enlightened.local:36310 del01s07-in-f24.1:https ESTABLISHED
tcp        0      0 enlightened.local:45038 a96-17-181-10.depl:http ESTABLISHED
tcp        0      0 enlightened.local:37892 ABTS-North-Static-:http ESTABLISHED
.....
Similarly to list out only udp connections use the u option.
$ netstat -au
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State      
udp        0      0 *:34660                 *:*                                
udp        0      0 enlightened:domain      *:*                                
udp        0      0 *:bootpc                *:*                                
udp        0      0 enlightened.local:ntp   *:*                                
udp        0      0 localhost:ntp           *:*                                
udp        0      0 *:ntp                   *:*                                
udp6       0      0 fe80::216:36ff:fef8:ntp [::]:*                             
udp6       0      0 ip6-localhost:ntp       [::]:*                             
udp6       0      0 [::]:ntp                [::]:*
The above output shows both ipv4 and ipv6 connections.

3. Disable reverse dns lookup for faster output

By default, the netstat command tries to find out the hostname of each ip address in the connection by doing a reverse dns lookup. This slows down the output. If you do not need to know the host name and just the ip address is sufficient then suppress the hostname lookup with the n option.
$ netstat -ant
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State      
tcp        0      0 127.0.1.1:53            0.0.0.0:*               LISTEN     
tcp        0      0 127.0.0.1:631           0.0.0.0:*               LISTEN     
tcp        0      0 192.168.1.2:49058       173.255.230.5:80        ESTABLISHED
tcp        0      0 192.168.1.2:33324       173.194.36.117:443      ESTABLISHED
tcp6       0      0 ::1:631                 :::*                    LISTEN
The above command shows ALL TCP connections with NO dns resolution. Got it ? Good.

4. List out only listening connections

Any network daemon/service keeps an open port to listen for incoming connections. These too are like socket connections and are listed out by netstat. To view only listening ports use the l options.
$ netstat -tnl
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address           Foreign Address         State      
tcp        0      0 127.0.1.1:53            0.0.0.0:*               LISTEN     
tcp        0      0 127.0.0.1:631           0.0.0.0:*               LISTEN     
tcp6       0      0 ::1:631                 :::*                    LISTEN
Now we can see only listening tcp ports/connections. If you want to see all listening ports, remove the t option. If you want to see only listening udp ports use the u option instead of t.
Make sure to remove the 'a' option, otherwise all connections would get listed and not just the listening connections.

5. Get process name/pid and user id

When viewing the open/listening ports and connections, its often useful to know the process name/pid which has opened that port or connection. For example the Apache httpd server opens port 80. So if you want to check whether any http server is running or not, or which http server is running, apache or nginx, then track down the process name.

The process details are made available by the 'p' option.
~$ sudo netstat -nlpt
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name
tcp        0      0 127.0.1.1:53            0.0.0.0:*               LISTEN      1144/dnsmasq    
tcp        0      0 127.0.0.1:631           0.0.0.0:*               LISTEN      661/cupsd       
tcp6       0      0 ::1:631                 :::*                    LISTEN      661/cupsd


When using the p option, netstat must be run with root privileges, otherwise it cannot detect the pids of processes running with root privileges and most services like http and ftp often run with root privileges.

Along with process name/pid its even more useful to get the username/uid owning that particular process. Use the e option along with the p option to get the username too.
$ sudo netstat -ltpe
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       User       Inode       PID/Program name
tcp        0      0 enlightened:domain      *:*                     LISTEN      root       11090       1144/dnsmasq    
tcp        0      0 localhost:ipp           *:*                     LISTEN      root       9755        661/cupsd       
tcp6       0      0 ip6-localhost:ipp       [::]:*                  LISTEN      root       9754        661/cupsd


The above example lists out Listening connections of Tcp type with Process information and Extended information.
The extended information contains the username and inode of the process. This is a useful command for network administrators.

Note - If you use the n option with the e option, the uid would be listed and not the username.

6. Print statistics

The netstat command can also print out network statistics like total number of packets received and transmitted by protocol type and so on.

To list out statistics of all packet types
$ netstat -s
Ip:
    32797 total packets received
    0 forwarded
    0 incoming packets discarded
    32795 incoming packets delivered
    29115 requests sent out
    60 outgoing packets dropped
Icmp:
    125 ICMP messages received
    0 input ICMP message failed.
    ICMP input histogram:
        destination unreachable: 125
    125 ICMP messages sent
    0 ICMP messages failed
    ICMP output histogram:
        destination unreachable: 125
... OUTPUT TRUNCATED ...
To print out statistics of only select protocols like TCP or UDP use the corresponding options like t and u along with the s option. Simple!

7. Display kernel routing information

The kernel routing information can be printed with the r option. It is the same output as given by the route command. We also use the n option to disable the hostname lookup.
$ netstat -rn
Kernel IP routing table
Destination     Gateway         Genmask         Flags   MSS Window  irtt Iface
0.0.0.0         192.168.1.1     0.0.0.0         UG        0 0          0 eth0
192.168.1.0     0.0.0.0         255.255.255.0   U         0 0          0 eth0

8. Print network interfaces

The netstat command can also print out the information about the network interfaces. The i option does the task.
$ netstat -i
Kernel Interface table
Iface   MTU Met   RX-OK RX-ERR RX-DRP RX-OVR    TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0       1500 0     31611      0      0 0         27503      0      0      0 BMRU
lo        65536 0      2913      0      0 0          2913      0      0      0 LRU
The above output contains information in a very raw format. To get a more human friendly version of the output use the e option along with i.
$ netstat -ie
Kernel Interface table
eth0      Link encap:Ethernet  HWaddr 00:16:36:f8:b2:64  
          inet addr:192.168.1.2  Bcast:192.168.1.255  Mask:255.255.255.0
          inet6 addr: fe80::216:36ff:fef8:b264/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:31682 errors:0 dropped:0 overruns:0 frame:0
          TX packets:27573 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000 
          RX bytes:29637117 (29.6 MB)  TX bytes:4590583 (4.5 MB)
          Interrupt:18 Memory:da000000-da020000 

lo        Link encap:Local Loopback  
          inet addr:127.0.0.1  Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING  MTU:65536  Metric:1
          RX packets:2921 errors:0 dropped:0 overruns:0 frame:0
          TX packets:2921 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:305297 (305.2 KB)  TX bytes:305297 (305.2 KB)
The above output is similar to the output shown by the ifconfig command.

9. Get netstat output continuously

Netstat can output connection information continuously with the c option.
$ netstat -ct
The above command will output tcp connections continuously.

10. Display multicast group information

The g option will display the multicast group information for IPv4 and IPv6 protocols.
$ netstat -g
IPv6/IPv4 Group Memberships
Interface       RefCnt Group
--------------- ------ ---------------------
lo              1      all-systems.mcast.net
eth0            1      224.0.0.251
eth0            1      all-systems.mcast.net
lo              1      ip6-allnodes
lo              1      ff01::1
eth0            1      ff02::fb
eth0            1      ff02::1:fff8:b264
eth0            1      ip6-allnodes
eth0            1      ff01::1
wlan0           1      ip6-allnodes
wlan0           1      ff01::1

More examples of netstat command

Okay, we covered the basic examples of netstat command above. Now its time to do some geek stuff with style.

Print active connections

Active socket connections are in "ESTABLISHED" state. So to get all current active connections use netstat with grep as follows
$ netstat -atnp | grep ESTA
(Not all processes could be identified, non-owned process info
 will not be shown, you would have to be root to see it all.)
tcp        0      0 192.168.1.2:49156       173.255.230.5:80        ESTABLISHED 1691/chrome     
tcp        0      0 192.168.1.2:33324       173.194.36.117:443      ESTABLISHED 1691/chrome
To watch a continous list of active connections, use the watch command along with netstat and grep
$ watch -d -n0 "netstat -atnp | grep ESTA"

Check if a service is running

If you want to check if a server like http,smtp or ntp is running or not, use grep again.
$ sudo netstat -aple | grep ntp
udp        0      0 enlightened.local:ntp   *:*                                 root       17430       1789/ntpd       
udp        0      0 localhost:ntp           *:*                                 root       17429       1789/ntpd       
udp        0      0 *:ntp                   *:*                                 root       17422       1789/ntpd       
udp6       0      0 fe80::216:36ff:fef8:ntp [::]:*                              root       17432       1789/ntpd       
udp6       0      0 ip6-localhost:ntp       [::]:*                              root       17431       1789/ntpd       
udp6       0      0 [::]:ntp                [::]:*                              root       17423       1789/ntpd       
unix  2      [ ]         DGRAM                    17418    1789/ntpd


So we found that ntp server is running. Grep for http or smtp or whatever you are looking for.

Well, that was most of what netstat is used for. If you are looking for more advanced information or want to dig deeper, read up the netstat manual (man netstat).